Human Sensory Neurons Derived from Induced Pluripotent Stem Cells Support Varicella-Zoster Virus Infection
نویسندگان
چکیده
After primary infection, varicella-zoster virus (VZV) establishes latency in neurons of the dorsal root and trigeminal ganglia. Many questions concerning the mechanism of VZV pathogenesis remain unanswered, due in part to the strict host tropism and inconsistent availability of human tissue obtained from autopsies and abortions. The recent development of induced pluripotent stem (iPS) cells provides great potential for the study of many diseases. We previously generated human iPS cells from skin fibroblasts by introducing four reprogramming genes with non-integrating adenovirus. In this study, we developed a novel protocol to generate sensory neurons from iPS cells. Human iPS cells were exposed to small molecule inhibitors for 10 days, which efficiently converted pluripotent cells into neural progenitor cells (NPCs). The NPCs were then exposed for two weeks to growth factors required for their conversion to sensory neurons. The iPS cell-derived sensory neurons were characterized by immunocytochemistry, flow cytometry, RT-qPCR, and electrophysiology. After differentiation, approximately 80% of the total cell population expressed the neuron-specific protein, βIII-tubulin. Importantly, 15% of the total cell population co-expressed the markers Brn3a and peripherin, indicating that these cells are sensory neurons. These sensory neurons could be infected by both VZV and herpes simplex virus (HSV), a related alphaherpesvirus. Since limited neuronal populations are capable of supporting the entire VZV and HSV life cycles, our iPS-derived sensory neuron model may prove useful for studying alphaherpesvirus latency and reactivation.
منابع مشابه
Varicella Zoster Virus (VZV)-Human Neuron Interaction
Varicella zoster virus (VZV) is a highly neurotropic, exclusively human herpesvirus. Primary infection causes varicella (chickenpox), wherein VZV replicates in multiple organs, particularly the skin. Widespread infection in vivo is confirmed by the ability of VZV to kill tissue culture cells in vitro derived from any organ. After varicella, VZV becomes latent in ganglionic neurons along the ent...
متن کاملAn In Vitro Model of Latency and Reactivation of Varicella Zoster Virus in Human Stem Cell-Derived Neurons
Varicella zoster virus (VZV) latency in sensory and autonomic neurons has remained enigmatic and difficult to study, and experimental reactivation has not yet been achieved. We have previously shown that human embryonic stem cell (hESC)-derived neurons are permissive to a productive and spreading VZV infection. We now demonstrate that hESC-derived neurons can also host a persistent non-producti...
متن کاملAberrant virion assembly and limited glycoprotein C production in varicella-zoster virus-infected neurons.
Highly pure (>95%) terminally differentiated neurons derived from pluripotent stem cells appear healthy at 2 weeks after infection with varicella-zoster virus (VZV), and the cell culture medium contains no infectious virus. Analysis of the healthy-appearing neurons revealed VZV DNA, transcripts, and proteins corresponding to the VZV immediate early, early, and late kinetic phases of replication...
متن کاملProductive varicella-zoster virus infection of cultured intact human ganglia.
Varicella-zoster virus (VZV) is a species-specific herpesvirus which infects sensory ganglia. We have developed a model of infection of human intact explant dorsal root ganglia (DRG). Following exposure of DRG to VZV, viral antigens were detected in neurons and nonneuronal cells. Enveloped virions were visualized by transmission electron microscopy in neurons and nonneuronal cells and within th...
متن کاملCellular transcriptome analysis reveals differential expression of pro- and antiapoptosis genes by varicella-zoster virus-infected neurons and fibroblasts.
Transcriptional changes following varicella-zoster virus (VZV) infection of cultured human neurons derived from embryonic stem cells were compared to those in VZV-infected human foreskin fibroblasts. Transcription of 340 neuronal genes significantly altered by VZV infection included 223 transcript changes unique to neurons. Strikingly, genes inhibiting apoptosis were upregulated in neurons, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012